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Unsteady three-dimensional MHD flow and mass transfer in a porous medium is presented here 
by taking into account of thermal radiation. The governing fundamental equations are first 
transformed into a system of ordinary differential equations using self similar transformation and 
they are solved numerically by using the sixth-order Runge-Kutta-Fehlberg method with shooting 
technique for some values of the physical parameters embedded in the flow model. Important 
features of the flow and heat transfer characteristic for different values of thermal radiation, 
magnetic field and chemical reaction are analyzed and discussed. Numerical results for the 
velocities, temperature and concentration profiles for a prescribed magnetic field, thermal 
radiation and chemical reaction parameters as well as the development of the local skin-friction 
coefficient, local Nusselt number and Sherwood number are reported graphically for various 
parametric conditions to show interesting aspect of the numerical solution. 
 
Keywords: Unsteady flow: Three-dimensional stretching: Mass transfer: Porous medium: Radiation: 
Magnetic field. 

 
 
INTRODUCTION 
 
Boundary layer flow induced by a stretching surface has 
been studied extensively under varied conditions by 
many researchers because of its considerable 
engineering applications. For instance, aerodynamic 
extrusion of plastic sheets, cooling of metallic sheets in 
a cooling bath, in paper industry is few examples of 
such applications. Particularly, momentum and heat 
transfer in stretching flow of a viscoelastic fluid has 
been analyzed due to its ever increasing usage in 
manufacturing process of artificial film and artificial 
fibers. Literature survey establishes serious attention 
has been given to the steady two-dimensional flow 
bounded by a stretching surface whose velocity to the 
distance from a fixed origin varies linearly and non-
linearly. Some recent contributions on the topic have 
been presented (Cortell, 2007; Cortell, 2006; Liao, 
2006; Liao, 2006; Ali, 2007; Xu, 2005; Kumari, 2009;  
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Hayat, 2008; Sajid and Hayat, 2008; Sajid et al., 2008). 
Recently, Xu et al. (2007) looked at the unsteady three-
dimensional magnetohydrodynamic (MHD) boundary 
layer flow and heat transfer over a stretching sheet. 
They have presented the series solutions for the 
mathematical problems. Very recently, Hayat et al. 
(2010) studied homotopy solution for the unsteady 
three-dimensional MHD flow and mass transfer in a 
porous space. 

Radiative heat transfer flow is very important in 
manufacturing industries for the design of reliable 
equipments, nuclear plants, gas turbines and various 
propulsion devices for aircraft, missiles, satellites and 
space vehicles. Similarly, the effects of thermal 
radiation on the forced and free convection flows are 
important in the content of space technology and 
processes involving high temperature. Based on these 
applications, England and Emery (1969) studied the 
thermal radiation effect of an optically thin gray gas 
bounded by a stationary vertical plate. Plumb et al. 
(1981) was the first to examine the effect of horizontal  



 
 
 
 
cross-flow and radiation on natural convection from 
vertical heated surface in saturated porous media. 
Rosseland diffusion approximation had been utilized in 
this investigation of convection flow with radiation. 
Makinde et al. (2011) examined unsteady convection 
with chemical reaction and radiative heat transfer past a 
flat porous plate moving through a binary mixture. 
Makinde and Olanrewaju (2011) studied unsteady 
mixed convection with Soret and Dufour effects past a 
porous plate moving through a binary mixture of 
chemically reacting fluid. Hayat et al. (2009) 
investigated the effect of thermal radiation on the flow of 
a second grade fluid and the references there in. 
Similarly, very recently, Hayat et al. (2010) studied 
effects of radiation and magnetic field on mixed 
convection stagnation-point flow over a vertical 
stretching sheet in a porous medium.  

The aim of present work is to extend the analysis of 
Hayat et al. (2010) in three directions. This is because 
of the important in electrical power generation, 
astrophysical flows, solar power technology, space 
vehicle re-entry and other industrial areas.We present 
the problem formulation in Section 2. Section 3 includes 
the method of solutions.  In Section 4, the solutions are 
analyzed by various parameters. Finally, main 
observations are presented in Section 5. 
 
 
Mathematical formulation 
 
We consider the transient and three-dimensional flow of 
a viscous fluid over a stretching surface. The fluid is 
electrically conducting in the presence of a constant 

applied magnetic field 0B  and thermal radiation. The 

induced magnetic field is neglected under the 
assumption of a small magnetic Reynolds number. 

Initially (for 0=t ), both fluid and plate are stationary 

and they have constant temperature   T∞
and 

Concentration ∞C . The plate at 0=t is expressed by 

the velocity components byvaxu == ,  (u and v are the 

velocity components in x- and y-directions). Now, for 
this time the surface temperature and concentration 

vary from ∞T to wT  and ∞C to wC , respectively. The 

mathematical statements for the boundary layer 
problem are  
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where w  is the z-component of velocity,  ρ  is the fluid 

density, υ  is the kinematic viscosity, σ  is the electrical 

conductivity, ϕ  is the porosity, k ′ is the permeability of 

the porous medium, C  is the concentration species of 

the fluid, D  is the diffusion coefficient of the diffusion 

species in the fluid, 1k  is the first-order homogeneous 

constant reaction rate and α  is the thermal diffusivity. 

The corresponding boundary conditions are  
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where the constants a  and b  are positive. The 
radiative heat flux qr is described by Roseland 
approximation (Sajid et al. (2008)) such that  
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where 
*σ  and K  are the Stefan-Boltzmann constant 

and the mean absorption coefficient, respectively. 
Following Sajid and Hayat, (2008), we assume that the 
temperature differences within the flow are sufficiently 

small so that  
4

T  can be expressed as a linear function 

after using Taylor series to expand 
4

T  about the free 

stream temperature ∞T and neglecting higher-order 

terms. This results in the following approximation: 
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Using (8) and (7) in (4), we obtain 
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Following Hayat et al., (2011), it is convenient to use 
the following similarity transformations: 
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Eq. (1) is satisfied identically and Eqs. (2)-(5) becomes 
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Prime denotes the derivative with respect to η, c ( = b/a) 
the stretching parameter is a positive constant. It was 
noted that when c = 0, the problem reduces to two-
dimensional case. Here the local Hartman number M, 
the local porosity parameter λ, the Schmidt number Sc, 
the chemical reaction parameter γ and the thermal 
radiation parameter Ra are given by  
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Here, the skin friction coefficients Cfx and Cfy in x- and 
y-directions, local Nusselt number Nu and local 
Sherwood number Sh are 
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(17) 
where Rex = ax

2
/ν and Rey = ay

2
/ ν are the local 

Reynolds number, )0,()0,( εε gandf ′′′′  are the 

surface shear stresses in x- and y-directions, )0,(εθ ′ is 

the surface heat transfer parameter and )0,(εφ ′ is the 

surface mass transfer parameter. 
For ε = 0, Eqs. (11)-(14) can be written as  
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Similarly for ε = 1, Eqs. (11)-(14) becomes 
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subject to the boundary conditions (15).  
 
 
Method of Solution 
 
Here, we solve Eqs. (18) analytically and Eqs. (19) 
numerically using Shooting technique with sixth order 
Runge-Kutta method. It can be seen that for ε = 0, Eq. 
(18) has a closed form solution of the form  
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Eq. (19) constitutes a highly non-linear coupled 
boundary value problem of third and second-order. So 
we develop most effective numerical shooting technique 
with sixth-order Runge-Kutta integration algorithm. To 

select ∞η we begin with some initial guess value and 

solve the problem with some particular set of 
parameters to 

obtain  
′ ′ f ε,0( ), ′ ′ g (ε,0), ′ θ ε,0( )and ′ φ ε,0( ). The 

solution process is repeated with another larger value of 

∞η until two successive values of 

( ) ( ) ( )0,0,),0,(,0, εφεθεε ′′′′′′ andgf  differ only after 

desired digits signifying the limit of the boundary along 

η. The last value of ∞η  is chosen as appropriate value 

for that particular simultaneous equations of first order 
for seven unknowns following the method of 
superposition. To solve this system we require ten initial  
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Table 1. Values of )0,()0,(),0,(),0,( εφεθεε ′′′′′′ andgf  for the embedded flow parameters in the flow model 

when ε = 1. 
 

M Sc Pr Ra λ γ c )0,(εf ′′−  )0,(εg ′′−  )0,(εθ ′−  )0,(εφ ′−  

0 1 1 1 1 1 0.1 1.42707425 0.11989595 0.28417669 1.17092198 

0.1 1 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 1.17074353 

0.3 1 1 1 1 1 0.1 1.45821203 0.12358193 0.28074425 1.16934359 

0.4 1 1 1 1 1 0.1 1.48198158 0.12637529 0.27819159 1.16815717 

0.1 0.62 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 0.90796272 

0.1 0.78 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 1.02595318 

0.1 2.62 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 1.94693909 

0.1 1 0.72 1 1 1 0.1 1.43056719 0.12031101 0.22732899 1.17074353 

0.1 1 3.00 1 1 1 0.1 1.43056719 0.12031101 0.64411898 1.17074353 

0.1 1 7.10 1 1 1 0.1 1.43056719 0.12031101 1.15093985 1.17074353 

0.1 1 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 1.17074353 

0.1 1 1 2 1 1 0.1 1.43056719 0.12031101 0.21079238 1.17074353 

0.1 1 1 3 1 1 0.1 1.43056719 0.12031101 0.17818658 1.17074353 

0.1 1 1 1 0.1 1 0.1 1.07235304 0.07445359 0.33135495 1.19109626 

0.1 1 1 1 0.3 1 0.1 1.16132221 0.08668680 0.31800509 1.18562015 

0.1 1 1 1 0.4 1 0.1 1.20341226 0.09222260 0.31206396 1.18313408 

0.1 1 1 1 1 0.1 0.1 1.43056719 0.12031101 0.28378656 0.63711465 

0.1 1 1 1 1 0.3 0.1 1.43056719 0.12031101 0.28378656 0.79351784 

0.1 1 1 1 1 0.4 0.1 1.43056719 0.12031101 0.28378656 0.85919188 

0.1 1 1 1 1 1 0.00 1.41774468 0.00000000 0.26665579 1.15485136 

0.1 1 1 1 1 1 0.25 1.44945710 0.31642983 0.30811892 1.19400515 

0.1 1 1 1 1 1 0.50 1.48012872 0.68163040 0.34556949 1.23142220 

 
 
conditions whilst we have only two initial conditions. 
Now, we employ numerical shooting technique where 
these two ending boundary conditions are utilized to 
produce two unknown initial conditions at η = 0. In this 

calculation, the step size 001.0=∆η  is used while 

obtaining the numerical solution with 11max =η and five-

decimal accuracy as the criterion for convergence. 
 
 
RESULTS AND DISCUSSION 
 
Numerical calculations have been carried out for 
different values of the thermophysical parameters 
controlling the fluid dynamics in the flow regime. The 
values of Schmidt number (Sc) are chosen as water 
vapour (Sc = 0.62), ammonia (Sc = 0.78) and Propyl 
Benzene (Sc = 2.62) at temperature 25

o
C and one 

atmospheric pressure. The value of Prandtl number 
was chosen to be Pr = 0.72 which represents air at 
temperature 25

o
C and one atmospheric pressure. In all 

computation we desire the variation of f, g, θ and φ  

versus η for the velocities, temperature and species 
diffusion boundary layers. Table (1) shows the 
computations for the influence of the embedded flow 
parameters on the local skin friction on x and y  

directions together with the heat and mass transfer rate 
at the moving plate surface. It is quite interesting to note 
that increase in Sc, and γ has no effects on the skin 
friction coefficients and the Nusselt number at the 

surface )0,()0,(),0,( εθεε ′′′′′ andgf but increases 

the Sherwood number at the surface boundary layer. 
Skin friction coefficients at the surface increases as the 
Hartman number increases. It was also seen that the 
skin friction coefficients increases with an increase in 
the porosity parameter and at the same time decreasing 
the Nusselt and Sherwood number at the surface. 
Significantly, the radiation parameter Ra has 
appreciable influence on the heat transfer rate but with 
no effect on the other interesting physical quantities 
since it was only involved in the temperature equation. 
It was established from the table that as thermal 
radiation parameter Ra increases, the heat transfer rate 
decreases. It is noteworthy to note that the stretching 
parameter c has greater influence on the physical 
properties of the flow. It was seen clearly that increase 
in parameter c increases the skin friction coefficients, 
the Nusselt and Sherwood numbers at the surface 

boundary layer )0,()0,(,)0,(),0,( εφεθεε ′′′′′′ andgf . 

It is interesting to note that positive value of γ 
represents destructive and negative values represent 
generative chemical reaction. Increasing parameter γ  
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Figure 1. Velocity profiles for Ra = 1, Sc = 1, c = 0.5, ε = 1, λ = 0.5, Pr = 1, 
γ = 1. 

 

 
 

Figure 2. Velocity profiles for Pr = 1, M = 1, c = 0.5, ε = 1, Ra = 0.5, Sc = 1, 
γ = 1. 

 
 
increases the Sherwood number at the surface.F 
 
 
Velocity Profiles  
 
Figures 1-6 depict the effects of emerging flow 
parameters on non-dimensional velocity profiles. In 
figure 1, the effect of increasing the Hartman number on 
the momentum boundary-layer thickness is illustrated. 
Increasing this parameter lead to a decrease in the 
velocity which confirmed with the fact that the magnetic 
field presents a damping effect on the velocity by 
creating a drag force that opposes the fluid motion. 
Figure 2 shows a decrease in the fluid velocity within 
the boundary layer due to porosity parameter. This 
indicates the usual fact that porosity stabilizes the 
boundary layer growth. Furthermore, figure 3 shows 
that an increase in the stretching parameter leads to a 
small decrease in the velocity profile. Figure 4-6 has 
similar effect with Figures 1-3 as expected. 

Temperature Profiles  
 
The effects of various thermophysical parameters on 
the fluid temperature are illustrated in Figures 7 to 11. 
In figure 7, we observed that an increase in the 
Hartman number enhances the thermal boundary layer 
thickness. Figure 8 shows the influence of Prandtl 
number on fluid temperature. Physically, as the Prandtl 
number is a ratio of viscous to thermal diffusion, 
increase in Prandtl number indicates a decrease in 
thermal diffusion, and hence decreases the thermal 
boundary layer thickness. Figure 9 depicts the graph of 
temperature against spanwise coordinate η for various 
values of thermal radiation parameter. Due to radiation 
absorption the thermal boundary layer thickness 
increases as the radiation parameter increases. It is 
interesting to note that increase in the porosity 
parameter increases the temperature boundary layer 
thickness (see figure 10). Figure 11 represents the 
temperature solution for various values of the stretching 
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Figure 3. Velocity profiles for Pr = 1, M = 1, γ = 0.5, ε = 1, Ra = 0.5, Sc 
= 1, λ = 1. 

 
 

 
 

Figure 4. Velocity profiles for Ra = 1, Sc = 1, c = 0.5, ε = 1, λ = 0.5, Pr 
= 1, γ = 1. 

 

 
 

Figure 5. Velocity profiles for Pr = 1, M = 1, c = 0.5, ε = 1, Ra = 
0.5, Sc = 1, γ = 1. 
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Figure 6. Velocity profiles for Pr = 1, M = 1, γ = 0.5, ε = 1, Ra = 
0.5, Sc = 1, λ =1 

 
 

 
 

Figure 7. Temperature profiles for Ra = 1, Sc = 1, c = 0.5, ε = 1, λ = 0.5, 
Pr = 1, γ = 1. 

 

 
 

Figure 8. Temperature profiles for Ra = 1, M = 1, c = 0.5, ε = 1, λ = 
0.5, Sc = 1, γ = 1. 
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parameter c. It was noticed that the thermal boundary 
layer thickness decreases as the stretching parameter c 
increases across the plate.  
 
 
Concentration Profiles  
 
Figures 12–15 depict the fluid concentration profiles 

against spanwise coordinate η for varying values of 
physical parameters in the boundary layer. Figure 12 
shows the influence of the magnetic field parameter M 
on the species concentration. Increasing the Hartman 
number increases the species concentration boundary 
layer thickness. Figure 13 described the influence of 

Schmidt number on the species concentration and it 
was observed that increase in Schmidt number leads to 
a decrease in the species concentration within the 
boundary layer due to the combined effects of 
buoyancy forces and species molecular diffusivity. 
Moreover, it is noteworthy that increasing values of 
chemical reaction parameter decreases the species 
concentration boundary layer thickness as illustrated in 
figure 14. Finally, it is noteworthy to note that increasing 
the ratio of stretching constant c decreases the species 
concentration boundary layer thickness across the 
plate. 
 

CONCLUSIONS 
This present article discusses a mathematical model for 
the transient flow with heat and mass transfer in the 
presence of thermal radiation. Three dimensional 
stretching cases have been taken care off. Closed form 
solutions are first developed for ε = 0. For ε = 1, 
numerical solutions were obtained and interpreted for 
different involved embedded flow parameters. The 
following conclusions were drawn as follows: 

• The effects of Hartman number and the porosity 
parameter are qualitatively similar. 
• The effect of decreasing values of M and λ is to 
increase the boundary layer thickness. 
• The effect of Schmidt number Sc is to decrease the 
concentration boundary layer thickness 
• The effect of radiation parameter Ra is to increase 
the thermal boundary layer thickness through              
absorption. 

• The thermal boundary layer thickness increases as 
Prandtl number Pr decreases. 

• The influence of c and M on the skin friction 
coefficients are the same. 
• The effect of the destructive chemical reaction 
parameter γ is to reduce the concentration field. 

• The radiation parameter Ra has no effect on the 
skin friction coefficients and the mass transfer rate as 
expected. 
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