

International Research Journal of Research in Environmental Science and Toxicology Vol. 13(6) pp. 1-2, December, 2024 Available online https://www.interesjournals.org/research-environmental-science-toxicology/ archive.html Copyright ©2024 International Research Journals

Perspective

Potential CO₂ Biofixation by Microalgae Strains

Ila H Broyles*

Department of Environmental Science, Baiko Gakuin University, Yamaguchi, Japan

*Corresponding Author's E-mail: ibroyles@ti.org

Received: 12-August-2024, Manuscript No. JREST-24-145128; **Editor assigned:** 15-August-2024, PreQC No. JREST-24-145128 (PQ); **Reviewed:** 29-August-2024, QC No. JREST-24-145128; **Revised:** 01-December-2024, Manuscript No. JREST-24-145128 (R); **Published:** 29-December-2024, DOI: 10.14303/2315-5698.2024.718

INTRODUCTION

In the quest to combat climate change, one of the most promising strategies is the biofixation of carbon dioxide (CO₂) using microalgae. These microscopic organisms, with their remarkable ability to capture and convert CO₂ through photosynthesis, present a viable solution to reduce atmospheric CO₂ levels and mitigate global warming. This article explores the potential of various microalgae strains for CO₂ biofixation, their mechanisms and the current advancements in this field.

Understanding microalgae and CO₂ biofixation

Microalgae are a diverse group of photosynthetic microorganisms that can thrive in various environments, from freshwater to marine systems. They use sunlight, water and CO_2 to produce organic compounds through photosynthesis. Unlike terrestrial plants, microalgae have a higher growth rate and can be cultivated in non-arable land, making them an attractive option for CO_2 biofixation.

The process of CO_2 biofixation by microalgae involves several key steps. CO_2 is absorbed from the atmosphere or industrial emissions and transported into the algal cells. Inside the cells, CO_2 is fixed into organic molecules through photosynthetic pathways. This process not only reduces atmospheric CO_2 but also produces valuable byproducts like lipids, proteins and carbohydrates, which can be used in various industrial applications.

Microalgae strains with high CO₂ fixation potential

Several microalgae strains have shown exceptional potential for CO_2 biofixation due to their high growth rates, robust photosynthetic machinery and tolerance to varying environmental conditions. Here are some notable strains:

Chlorella vulgaris: Chlorella vulgaris is one of the most studied microalgae for CO_2 biofixation. It is known for its high biomass productivity and efficient CO_2 uptake. This strain can thrive in a wide range of conditions, making it suitable for large-scale cultivation. Research indicates that Chlorella vulgaris can achieve CO_2 fixation rates of up to 1.8

grams per liter per day, which is substantial compared to many other microalgae strains.

Spirulina platensis: Spirulina platensis, a cyanobacterium often classified as some blue-green algae, is renowned for its high protein content and potential for CO_2 sequestration. It grows well in alkaline and saline environments, which are often less suitable for other crops. Spirulina's ability to tolerate harsh conditions and its rapid growth make it a strong candidate for CO_2 biofixation. Studies have shown that Spirulina platensis can fix CO_2 at a rate of approximately 1.5 grams per liter per day.

Nannochloropsis oculata: Nannochloropsis oculata is a microalga that excels in lipid production and CO_2 fixation. It is particularly useful in the production of biofuels due to its high oil content. This strain can fix CO_2 at rates of up to 2.2 grams per liter per day under optimal conditions. Its robustness and efficiency in converting CO_2 into valuable lipids make it a key player in both CO_2 mitigation and sustainable energy production.

Scenedesmus obliquus: Scenedesmus obliquus is a green microalga that has shown significant potential for CO_2 biofixation. It is known for its ability to grow in high CO_2 concentrations, which makes it particularly suitable for industrial applications where CO_2 emissions are high. Research indicates that Scenedesmus obliquus can achieve CO_2 fixation rates of around 1.7 grams per liter per day, making it a valuable strain for mitigating CO_2 emissions.

DESCRIPTION

Mechanisms enhancing CO₂ biofixation

Several factors and mechanisms influence the efficiency of CO_2 biofixation in microalgae. Understanding these can help optimize their performance:

Photosynthetic efficiency: The primary mechanism for CO₂ fixation in microalgae is photosynthesis. Microalgae convert CO₂ into organic compounds using light energy. The efficiency of this process depends on the availability of light, CO₂ concentration and the algal strain's photosynthetic

machinery. Genetic and biochemical modifications can enhance the photosynthetic efficiency of microalgae, leading to increased CO_2 uptake.

Carbon Concentrating Mechanisms (CCMs): Many microalgae possess carbon concentrating mechanisms (CCMs) that enable them to capture and concentrate CO_2 more efficiently than plants. CCMs involve specialized structures and proteins that increase the internal CO_2 concentration, making photosynthesis more efficient. Strains with well-developed CCMs are better suited for CO_2 biofixation, particularly in environments with fluctuating CO_2 levels.

Cultivation conditions: The growth environment plays a crucial role in the effectiveness of CO_2 biofixation. Factors such as light intensity, temperature, pH and nutrient availability can significantly impact algal growth and CO_2 uptake. Optimizing these conditions for specific microalgae strains can enhance their biofixation potential. For example, high light intensity and optimal nutrient levels can increase the growth rate and CO_2 fixation rate of microalgae.

Advancements and applications

Recent advancements in biotechnology and algal cultivation techniques have significantly improved the potential of microalgae for CO_2 biofixation. Genetic engineering, metabolic pathway optimization and novel cultivation systems are at the forefront of this progress.

Genetic engineering: Genetic modifications can enhance microalgae strains' CO_2 fixation capabilities by improving their photosynthetic efficiency, CCMs and stress tolerance. Techniques such as CRISPR/Cas9 are being used to develop strains with higher CO_2 uptake and improved growth characteristics.

Metabolic pathway optimization: Metabolic engineering aims to optimize the pathways involved in CO_2 fixation and biomass production. By altering metabolic pathways, researchers can increase the efficiency of CO_2 conversion and enhance the production of valuable byproducts like biofuels and high-value chemicals.

Novel cultivation systems: Innovations in cultivation systems, such as photobioreactors and open pond systems, have improved the efficiency and scalability of microalgae production. Photobioreactors provide controlled environments that optimize light, CO₂ and nutrient levels, leading to higher biofixation rates and productivity.

Challenges and future directions

Despite the promising potential of microalgae for CO₂ biofixation, several challenges remain. These include high cultivation costs, competition with other land uses and the need for efficient harvesting and processing technologies. Addressing these challenges requires ongoing research and development to make microalgae-based CO₂ mitigation economically viable and sustainable.

Future research should focus on improving strain performance, optimizing cultivation systems and developing cost-effective technologies for large-scale production. Additionally, integrating microalgae CO2 biofixation with other carbon capture and storage technologies could provide a comprehensive approach to mitigating climate change.

CONCLUSION

Microalgae offer a promising solution for CO₂ biofixation, with various strains demonstrating significant potential for capturing and converting atmospheric CO₂. Advances in biotechnology and cultivation techniques continue to enhance the efficiency and scalability of microalgae-based CO₂ mitigation. While challenges remain, the ongoing research and development in this field hold great promise for leveraging microalgae to combat climate change and create a more sustainable future.