The goal of the current study was to use biosynthesized silver nanoparticles (AgNPs) to decolorize synthetic melanoidins using bacterial extract in an immobilized state. Bacillus sp. BAC1 was used to biosynthesize silver nanoparticles employing an extracellular approach. UV-Visible spectroscopic spectroscopy was used to analyze silver nanoparticles of brown hue that were produced through biosynthesis. The spherical shape and smooth surface morphology of the nanoparticles were further characterized using Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopic (AFM) analysis. Under typical circumstances, the amount of melanoidin decolorization in the bacterial extracellular supernatant was greater than 65% (in 12 hours). In comparison, biosynthesized AgNPs demonstrated 82% clearance under comparable circumstances. The maximal amount of melanoidin removal from the cell free extract immobilized with manufactured AgNPs was 92% in 12 hours; this highlights the usefulness of Nano-coupled biomaterial immobilization as a method for speedy melanoidin decolorization (Sadighi A et al., 2013).
Share this article